

Unidad de Vigilancia de la Salud

ESTIMACIONES DE CASOS POSITIVOS ACUMULADOS MODELO MATEMATICO

"SEIR" MODIFICADO

Proyecciones de la Apertura Según Zonas Clasificadas para el Monitoreo de la Apertura de la Economía 8 de Junio al 31 de Agosto 2020

Tegucigalpa MDC, Honduras, C.A.

ELEMENTOS DEL PLAN DE APERTURA GRADUAL E INTELIGENTE DE LOS SECTORES ECONÓMICOS Y SOCIALES

INTRODUCCION

El impacto de la pandemia a la salud, a la economía y los aspectos sociales.

- La necesidad de un sistema de salud fortalecido, contando con la provisión del EPP, suficiente abastecimiento de tratamientos de carácter ambulatorio y hospitalario y un sistema efectivo de rotación y relevo de los empleados de la salud.
- Se contó con información detallada de parte del gobierno de la disponibilidad de recursos humanos, medicamentos y EPP para el personal de salud.
- La apertura inteligente y gradual no elimina las restricciones y limitaciones de circulación, o la suspensión de la cuarentena.

SALUD: 6,327 personas contagiada

620 hospitalizados (143 en condición grave)

212 personas fallecidas

SOCIALES: 250 mil trabajadores suspendidos

1.1 millones de trabajadores independientes sin ingresos

Se estiman 296 trabajadores formales que perdieron sus empleos

28% de las microempresas cerradas definitivamenteSe proyecta un Incremento en los índices de pobrezaMayor vulnerabilidad de grupos sociales ya vulnerables

ECONÓMICOS: Un decrecimiento de la economía en más de 4%

Decrecimiento de los ingresos tributarios en un 60%

¿Cómo Funciona el Proceso de Apertura Inteligente de los Sectores Económicos y Sociales según su Fases y Regiones?

REGIÓN 1:

Caracterizada por la baja incidencia de la enfermedad y baja densidad poblacional 232 Municipios:

Apertura el **8 de junio** con el **60**% de los colaboradores El **22 de junio** podrán contar con el **80**% de los colaboradores El **06 de julio** podrán operar con el **100**% de los colaboradores

REGIÓN 2:

Caracterizada por incidencia media de la enfermedad y media densidad poblacional **53** municipios:

Apertura el **8 de junio** con el **40**% de los colaboradores

El 22 de junio podrán contar con el 60% de los colaboradores

El **06 de julio** podrán operar con el **80**% de los colaboradores

El 20 de julio con el 100% de los colaboradores

REGIÓN 3:

Caracterizada por incidencia media de la enfermedad y media densidad poblacional **13** municipios:

Apertura el **8 de junio** con el **20**% de los colaboradores

El 22 de junio podrán contar con el 40% de los colaboradores

El **06 de julio** podrán operar con el **60**% de los colaboradores


El 20 de julio con el 80% de los colaboradores

El **3 de agosto** con el **100**% de los colaboradores

¿Qué Sectores por su Alto Nivel de Contagio se Exceptúan en este Momento de la Apertura Inteligente, Gradual y Progresiva?

- El sector del Transporte Público (*en diseño plan de apertura*)
- Los centros comerciales y tiendas dentro de los mismo (*Entrarían bajo un plan piloto de apertura*)
- Los restaurantes continuaran trabajando bajo el servicio a domicilio, autoservicio y para llevar bajo los protocolos correspondientes
- La Academia: Universidades, colegios, escuelas (*entrarían en un plan piloto de apertura*)
- Los cines, conciertos y eventos deportivos

LOS PILARES FUNDAMENTALES DEL PLAN

Introducción del Modelo SEIR-M

El modelado matemático tiene el potencial de investigar la complejidad aparentemente intratable de la dinámica de las enfermedades infecciosas. Junto con el diálogo continuo entre los tomadores de decisiones y la comunidad multidisciplinaria de enfermedades infecciosas, y al aprovechar las nuevas corrientes de datos, los modelos matemáticos pueden poner al descubierto mecanismos de transmisión e indicar nuevos enfoques de prevención y control que ayudan a dar forma a la política de salud pública nacional e internacional.

Durante la presente pandemia, es fundamental comprender tanto el número probable de infecciones como su curso de tiempo para informar de manera adecuada, oportuna y lo más cercano a la realidad actual, así como también dando las respuestas de la salud pública como a todo el sistema de atención de la salud nacional.

Los enfoques para pronosticar el curso de esta nueva pandemia varían mucho en muy corto tiempo, por lo que realizar estimaciones precisas es una necesidad esencial para el Sistema de Salud y, por lo tanto, estas pueden incluir la simulación de la dinámica de la transmisión y la recuperación de la enfermedad o el ajuste empírico de las tendencias y patrones que los datos recolectados pueden mostrar. Un enfoque común consiste en utilizar modelos matemáticos con variables epidemiológicas, como el Modelo Susceptible de Recuperación de Infectados (SIR); el cual se modifica por la inclusión de las variables epidemiológicas y pasa a llamarse; Modelo Susceptible de Expuestos, Infectados y de Recuperación (SEIR-M).

Desarrollamos un modelo matemático de la dinámica de brotes de enfermedades infecciosas que captura las distribuciones de tiempos a los síntomas y la infecciosidad para el agente etiológico en cuestión y proporciona un enfoque alternativo a estudios teóricos anteriores. Este modelo puede usarse para evaluar el impacto de medidas simples de control de salud pública. Al explorar diferentes distribuciones y diferentes estrategias de intervención, nuestro objetivo es establecer un marco cuantitativo general que pueda ayudar a predecir si las medidas de control simples pueden tener éxito en revertir el crecimiento epidémico si se aplican eficazmente en una etapa temprana de un brote. En nuestros análisis, nos centramos en un brote de enfermedades infecciosas en sus primeras etapas dentro de una comunidad.

Asumimos que las personas en la comunidad se mezclan homogéneamente; es decir, todos los individuos susceptibles tienen la misma probabilidad de infectarse. Caracterizamos a los individuos en términos de su infecciosidad en función del tiempo ya que estaban infectados, y también la probabilidad de que aún no hayan desarrollado síntomas, S; las distribuciones de ejemplo se ilustran en cuenta que en los pacientes eventualmente desarrollan síntomas, porque S tiende a cero como el tiempo transcurrido desde la infección se hace grande más generalmente, si S tiende a un valor fijo S

Descripción del Modelo SEIR-M

Desarrollamos un modelo matemático del brote de enfermedades infecciosas, la dinámica que captura las distribuciones de tiempos a los síntomas y la infecciosidad para el agente etiológico en cuestión y proporciona un enfoque alternativo a estudios teóricos anteriores. Este modelo puede usarse para evaluar el impacto del simple control de las medidas de salud pública. Al explorar diferentes distribuciones, las diferentes intervenciones y las estrategias, nuestro objetivo es establecer una cuantitativa general del marco que puede ayudar a predecir si las medidas de control simples pueden tener éxito en revertir el crecimiento epidémico si se aplica eficazmente en una etapa temprana de un brote.

En nuestros análisis, nos enfocamos en un brote de enfermedad infecciosa desde sus primeras etapas dentro de una comunidad. Asumimos que las personas en la comunidad se mezclan homogéneamente; es decir, todos los individuos susceptibles son igualmente propensos a infectarse. Caracterizamos a las personas en términos de su infecciosidad en función del tiempo ya que estaban infectados, y también la probabilidad de que aún no lo hayan hecho síntomas desarrollados, desarrollar síntomas, porque S tiende a cero como el tiempo ya que la infección se vuelve intensa. Generalmente, si S tiende a un valor fijo S 0, entonces una proporción S de infecciones son totalmente asintomático.

Esta descripción del curso de la infección en el individuo, identificamos tres parámetros importantes:

En los modelos matemáticos compartimentales, los individuos dentro de una población cerrada se separan en grupos o compartimentos mutuamente excluyentes, en función de su estado de enfermedad. Cada individuo se considera que está en 1 compartimiento en un momento dado, pero puede moverse de un compartimiento a otro en función de los parámetros del modelo.

El Modelo **SEIR-M**; es uno de los modelos compartimentales más básicos, llamado así por sus 4 compartimentos (*susceptibles, expuestos, infectados y recuperados*). En este modelo, la progresión supuesta es que un individuo susceptible se expone y se infecte a través del contacto con otro individuo infectado. Después de un período como individuo infectado, durante el cual se supone que esa persona es contagiosa, el individuo avanza a un estado no contagioso, llamado recuperación, aunque esa etapa puede incluir la muerte o el aislamiento efectivo.

En la mayoría de las pandemias modeladas, toda una población comienza en el compartimento susceptible (Figura 1), que contiene individuos que se expondrán y podrían infectarse si se ponen en contacto con el patógeno. Esto implica que nadie tiene inmunidad a la enfermedad al comienzo del brote. El compartimento de expuesto se define como el grupo de la población que por el tiempo determinado han seguido las medidas de distanciamiento social en casa y que por su salida a la comunidad puede ser infectado, este infectado se define como individuos que tienen la capacidad de infectar a los otros individuos que están en el compartimento susceptible.

Como tal, este compartimento incluye transmisores asintomáticos del patógeno, así como los sintomáticos que requerirán niveles de cuidados bajo el modelo de atención médica.

Una simplificación en Modelo **SEIR-M**, es que no tiene en cuenta el período latente después de la exposición, sino que supone que las personas recién infectadas son inmediatamente contagiosas. La velocidad a la que las personas susceptibles se infectan depende del número de individuos en cada uno de los compartimentos de susceptibles, expuestos e infectados.

Al comienzo de un brote, cuando hay pocos individuos infectados, la enfermedad se propaga lentamente. A medida que más personas se infectan, contribuyen a la propagación y aumentar la tasa de infección. Un factor adicional en el cálculo de la tasa de propagación es la tasa de contacto efectiva (R0) al inicio de la pandemia y en el desarrollo (Rt). Este parámetro explica la transmisibilidad de la enfermedad, así como el número promedio de contactos por individuo.

Las estrategias comunitarias de mitigación, como poner en cuarentena a las personas infectadas, distanciarse socialmente y cerrar escuelas, reducen este valor y, por lo tanto, ralentizan la propagación. Aunque estas intervenciones pueden alterar el movimiento de las personas desde el compartimento susceptible al compartimento de expuestos y este directamente al de infectado, la transición del compartimento infectado al compartimento recuperado depende únicamente de la cantidad de tiempo que un individuo sea contagioso, capturado en la tasa de recuperación.

El término recuperado en el Modelo **SEIR-M** puede ser engañoso porque el compartimento recuperado no se refiere necesariamente al curso clínico de la enfermedad de un individuo, sino que representa a individuos que ya no son contagiosos. Debido a que los modelos compartimentados asumen poblaciones "cerradas" (sin migración), los individuos que han ganado inmunidad a la enfermedad y los que mueren de la enfermedad están incluidos en este compartimento.

El Modelo **SEIR-M** se define por sólo 2 parámetros: la velocidad de contacto efectiva (o), que afecta a la transición de los compartimentos de susceptible y expuestos al compartimento infectado, y la tasa de recuperación (o mortalidad); que afecta a la transición del compartimento infectado al compartimento recuperado. Si la velocidad a la que las personas se infectan supera la velocidad a la que se recuperan las personas infectadas, habrá una acumulación de individuos en el compartimento infectado.

El número de reproducción básica R0, el número medio de nuevas infecciones causadas por un solo individuo infectado en el curso de su enfermedad es la relación entre los valores que el país maneja en el momento de la estimación y durante el curso de la enfermedad. Una disminución de la tasa de contacto efectiva a través de estrategias de mitigación de la comunidad disminuye R0, retrasando y disminuyendo la tasa máxima de infección que se produce en la epidemia (es decir, "aplanar la curva"). Sin embargo, para mantener la disminución de las infecciones totales, la disminución de R0 generalmente debe mantenerse.

LAS LIMITACIONES DEL MODELO SEIR-M

La simplicidad del Modelo **SEIR-M** hace que sea fácil de calcular, pero también simplifica demasiado los procesos complejos de la enfermedad. El presente modelo modificado incorpora, por ejemplo, el período latente entre el momento en que un individuo está expuesto a una enfermedad y cuando ese individuo se infecta y se contagia. En el contexto de la enfermedad por coronavirus 2019 (COVID-19), esto corresponde al tiempo que tarda el coronavirus 2 en el síndrome respiratorio agudo severo para replicarse en un individuo recién infectado y alcanzar niveles suficientes para la transmisión.

El Modelo **SEIR-M** también hace varios supuestos simplificadores sobre la población. Asume una mezcla homogénea de la población, lo que significa que se supone que todos los individuos de la población tienen la misma probabilidad de entrar en contacto entre sí. Esto no refleja las estructuras sociales humanas, en las cuales la mayoría del contacto ocurre dentro de redes limitadas. El Modelo **SEIR-M** también supone una población cerrada sin migración, nacimientos o muertes por causas distintas a la epidemia.

Además, los parámetros en un modelo SIR tradicional no permiten la cuantificación de la incertidumbre en los parámetros del modelo. Las entradas de parámetros son estimaciones puntuales, que son valores únicos que reflejan la mejor suposición del modelador. Una estrategia común para predecir el curso de una epidemia es calcular el Modelo **SEIR-M** sobre algunos valores posibles para cada parámetro. El resultado es un rango de trayectorias futuras, pero esta estrategia no cuantifica formalmente la incertidumbre en las predicciones. Los modelos más complejos usan distribuciones para cada parámetro en lugar de una estimación puntual para caracterizar la probabilidad de varias trayectorias futuras. Si los parámetros no se conocen con precisión, estos modelos más complejos demostrarán la incertidumbre en las proyecciones. El efecto real del distanciamiento social, por ejemplo, a menudo se desconoce. También es posible, en adaptaciones más complejas del marco compartimental **SEIR-M**, incorporar datos observados formalmente para que los valores de los parámetros se estimen a partir de los datos entrantes.

¿Cómo deben interpretarse Los Modelos SEIR-M?

El Modelo **SEIR-M** es uno de varios tipos de modelos que pueden usarse para modelar una epidemia de enfermedades infecciosas. Durante la pandemia de COVID-19, los resultados de los modelos SEIR-M se han comparado con los de otros enfoques de modelado. Por ejemplo, algunos grupos han utilizado modelos de transmisión de red, que utilizan información sobre la conectividad entre individuos y grupos dentro de una población para modelar espacialmente la transmisión de enfermedades. También se han desarrollado modelos alternativos que no se basan en los mecanismos biológicos de la enfermedad, como el modelo de pandemia COVID-19 del Instituto de Medición y Evaluación de la Salud, que se basa en curvas de ajuste a los datos observados empíricamente.

Cuando diferentes enfoques de modelado producen resultados cualitativamente diferentes, puede deberse a diferencias críticas en los supuestos subyacentes, por lo que es imperativo determinar qué supuestos tienen más probabilidades de ser válidos. Alternativamente, los resultados diferentes pueden indicar que los datos de respaldo son simplemente insuficientes para llegar a una conclusión confiable. Aunque ningún modelo puede predecir perfectamente el futuro, un buen modelo proporciona una aproximación lo suficientemente precisa como para ser útil para informar las políticas públicas.

El número de reproducción básico, R0, definido como el número de infecciones secundarias generadas por una infección primaria en una población susceptible y que mide así lo intrínseco transmisibilidad de un agente infeccioso; se puede calcular como el área bajo la curva de infecciosidad. Por una epidemia para expandirse en las primeras etapas de propagación, más de una el caso secundario tiene que ser generado por el caso primario, y por lo tanto, necesitamos R0.

El tiempo de generación de la enfermedad Tg, que es el intervalo de tiempo medio entre la infección de una persona y la infección de las personas que infecciones individuales; junto con R0, Tg establece la escala de tiempo de crecimiento epidémico y, por lo tanto, la velocidad con la que la intervención es necesario adoptar medidas para evitar un gran brote.

Específicamente, el tiempo de duplicación para el número de casos en un el brote creciente es de orden Tg/(R0-1). La proporción de transmisión que ocurre antes de los síntomas (o asintomáticamente), que determina el potencial para medidas de control de salud pública basadas en síntomas para reducir el número de infecciones. Basamos el análisis en una intervención óptima idealizada, sin demoras en la implementación del aislamiento y la cuarentena, entonces el Tg no juega un papel importante en nuestro análisis. Sin embargo, el marco puede explicar un retraso distribuido entre el inicio de síntomas clínicos y admisión al hospital para aislamiento (en otras palabras, retrasos en la implementación), dentro de la definición de los efectos de los retrasos siempre aumenta. En la epidemia de SARS, por ejemplo, hubo retrasos significativos entre el inicio de los síntomas y aislamiento en entornos como el nuestro. Estas demoras se acortaron en el transcurso de la epidemia debido a anuncios de salud pública para alentar el informe temprano a un entorno de atención médica. Proponemos que la proporción de transmisión que ocurre antes la aparición de síntomas o por transmisión asintomática, que nosotros llamamos, es una nueva estadística útil para resumir la factibilidad probable de medidas de intervención basadas en el aislamiento o el rastreo de contactos en controlar un brote epidémico. Para control mediante aislamiento solo, necesitamos R0. Para enfermedades en las cuales R0, contactar el seguimiento debe agregarse al conjunto de medidas de control utilizadas.

En esta presente estimación muestra cómo los dos parámetros clave R0 y se pueden utilizar para predecir si las políticas de control que involucran aislamiento y rastreo de contactos conducir a la contención de brotes.

ESTIMACION DE CASOS PARA HONDURAS

"APERTURA DIA 0"

8 JUNIO 2020

Para la estructuración del Modelo **SEIR-M** se consideraron las variables más determinantes que interactúan directamente en la población produciendo los cambios

epidemiológicos recolectados por los sistemas de información de la UVS-SESAL:

S = Susceptible

E= Expuesto

I= Infectado

R= Recuperado

Para realizar las diferentes estimaciones solicitadas a la UVS-SESAL contextualizada en

tiempo y registro de cada evento epidemiológico se determinó categorizar a la población

de la misma manera que la Mesa Técnica Interinstitucional.

La reapertura se plantea en base a Regiones que responden a Patrones Homogéneos

relacionados a Densidad Poblacional, Incidencia Positiva, Capacidad de Atención Médica

y Relevancia Económica. En adición y de manera paralela, se propone la continuidad del

mecanismo de **EXCEPCIONES** para Sectores Particulares de la Economía que requieren

un tratamiento diferenciado.

La Progresividad en Población Laboral se proyecta en base a la incorporación del personal

total de cada empresa en etapas equivalentes al 20% luego del momento de Reapertura.

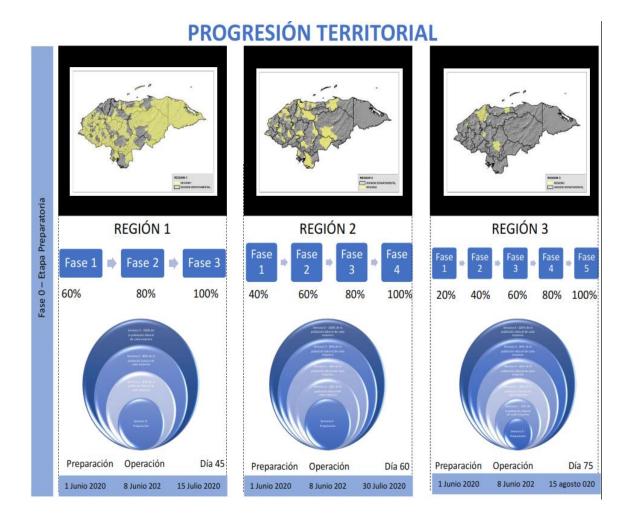
Sin embargo, la progresión inicial varía de acuerdo con el comportamiento de cada Región.

REGIÓN 1:

Caracterizada por la baja incidencia de la enfermedad y baja densidad poblacional 232

Municipios

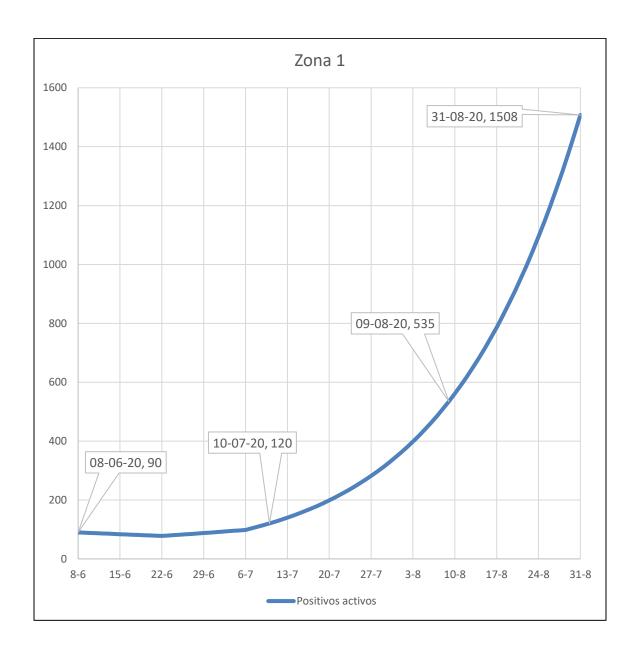
REGIÓN 2:


Caracterizada por incidencia media de la enfermedad y media densidad poblacional 53

Municipios

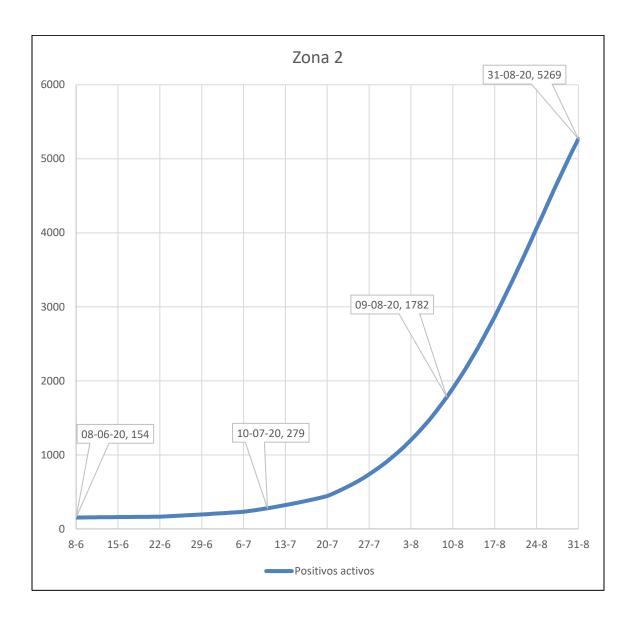
REGIÓN 3:

Caracterizada por incidencia media de la enfermedad y media densidad poblacional 13


Municipios

Se tomo en consideración la población de la **región 1** el restante de las poblaciones de las regiones 2 y 3, dando como resultado 3,444,998 personas utilizando proyecciones de población del INE para el 2020, no obstante, la masa laboral (18 a 69 años) está constituida por 1,727,322 personas, tomando en cuenta la tasa de desempleo el país.

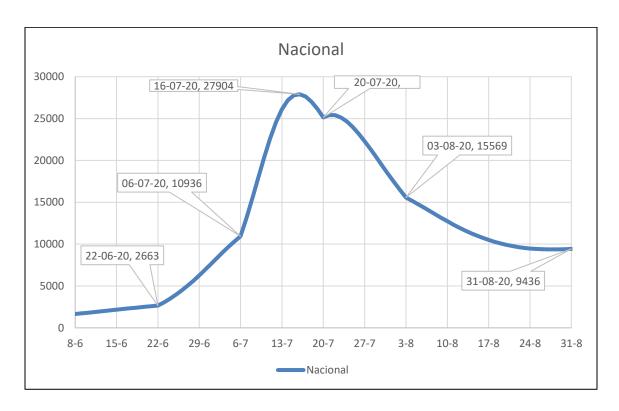
Considerando que el 60% iniciara laborares el día 08 de junio, es decir una población inicial de 1,036,393 de personas, y se agregaron el 20% 345,464 cada 14 días para completar la población en 28 días. Además, se tomó en consideración para correr la simulación la estimación de positivos en 14 días antes de la apertura gradual (08 de junio), dando como resultado que en la región 1 habría 90 personas positivas de COVID-19 según los datos reportados por el Laboratorio Nacional de Virología.


Tomando en consideración estos aspectos y definiendo la proyección desde el 08 de junio hasta el 31 de agosto; se realizó la siguiente simulación utilizando el modelo SEIR-M:

Del mismo modo que en la **región 1**, se estimó que la masa laboral de la **región 2** sería de **1,210,106**, no obstante, la apertura progresiva contempla el **40**% de la población laboral en esta zona, siendo de **484,042**, con un aumento del **20**% cada 14 días equivaliendo a **242,021** personas durante **42** días.

Por otro lado, en esta zona habría **154** personas positivas de COVID-19 para la fecha inicial de apertura progresiva.

Considerando todo esto y definiendo el mismo periodo de tiempo se aplicó el modelo SEIR-M, obteniendo los siguientes resultados:



ESCENARIO 1

Del mismo modo que en las **regiones 1 y 2**, se estimó entonces que la masa laboral de la **región 3** sería de **1,727,788**, no obstante, la apertura progresiva contempla solo el **20**% de la población laboral en esta zona, siendo de **345,558** con un aumento del **20**% cada **14** días equivaliendo a **345,558** personas durante **42** días.

Cabe destacar que para el **día 15** se contemplara el **40**% de la población total (*aumenta al doble*). Por otro lado, en esta región habría **1,727,788** personas positivas de COVID-19 para la fecha inicial de apertura progresiva.

Considerando todo esto y definiendo el mismo periodo de tiempo se aplicó el modelo SEIR-M, obteniendo los siguientes resultados:

ESCENARIO 2

Se tomo en consideración que el **10**% se aumentara cada **14** días para observar cómo se comporta la curva, obteniendo los siguientes resultados:

Claramente no se observa una curva tan pronunciada como la anterior, esto representa una disminución de más de la mitad de los casos, simplemente reduciendo el porcentaje al **10**% de masa laboral agregada a la población expuesta cada **14** días. Así que, como recomendación directa seria disminuir el porcentaje de masa laboral que se planteó al principio de la apertura inteligente.

POSITIVOS ACTIVOS						
Zona 1	Zona 2 Zona 3 Naci		Nacional			
90	154	1410	1654			
89	155	1481	1724			
88	156	1552	1796			
87	156	1626	1869			
86	157	1700	1943			
86	158	1774	2018			
85	159	1849	2093			
84	159	1924	2168			
83	160	1999	2242			
82	161	2073	2316			
81	161	2146	2389			
81	162	2218	2461			
80	163	2288	2531			
79	164	2355	2598			
78	164	2420	2663			
79	168	2791	3039			
81	173	3207	3460			
82	177	3670	3929			
83	181	4181	4446			
85	186	4739	5010			
86	190	5342	5618			
88	195	5983	6266			
89	200	6655	6944			
91	205	7348	7643			
92	210	8048	8350			
94	215	8740	9049			
95	220	9409	9725			
97	225	10037	10359			
99	231	10607	10936			
104	242	12768	13114			
109	254	15113	15476			
115	266	17551	17932			
120	279	19961	20360			
127	293	22201	22620			
133	307	24137	24577			
140	321	25661	26123			
147	337	26711	27195			
155	353	27271	27193			
163	370	27372	27779			
171	387	27072	27630			
180	405	26443	27028			
		25561				
189	424		26174			
199	444	24495	25138			
209	478	24734	25421			
220	514	24674	25407			
231	553	24350	25134			
243	594	23805	24642			

CONTAGIOS ACUMULADOS						
Zona 1	Zona 2	Zona 3	Nacional			
0	0	0	0			
9	15	140	164			
18	31	286	334			
26	46	440	512			
35	61	601	697			
44	77	769	890			
52	93	945	1089			
61	108	1128	1297			
69	124	1318	1511			
77	140	1516	1733			
85	156	1721	1962			
93	172	1934	2199			
101	188	2154	2443			
109	204	2380	2693			
117	220	2613	2950			
125	236	2853	3214			
133	253	3129	3515			
141	270	3447	3857			
149	288	3810	4246			
157	306	4224	4687			
165	324	4693	5183			
174	343	5222	5739			
183	362	5814	6359			
191	382	6473	7047			
200	402	7201	7803			
209	423	7997	8630			
219	444	8863	9526			
228	466	9794	10488			
238	489	10788	11514			
248	511	11838	12597			
258	535	13102	13895			
269	560	14598	15427			
280	587	16336	17202			
292	614	18312	19218			
304	643	20510	21457			
318	674	22899	23890			
331	706	25440	26477			
346	739	28084	29169			
361	774	30784	31919			
378	810	33494	34681			
394	849	36174	37417			
412	889	38792	40093			
431	931	41322	42684			
451	975	43747	45173			
471	1022	46196	47689			
493	1073	48638	50205			
516	1128	51049	52693			

255	639	23084	23977		540	1187	53406	55132
268	686	22226	23180		565	1250	55691	57506
282	737	21271	22289		592	1318	57891	59801
296	791	20250	21337		620	1391	59997	62008
311	849	19191	20351		649	1469	62002	64120
327	911	18117	19355		680	1553	63902	66135
344	976	17045	18365		712	1643	65695	68051
361	1046	15990	17398		746	1740	67383	69869
379	1121	14963	16463		782	1843	68966	71591
398	1200	13970	15569		820	1954	70447	73221
419	1284	13488	15191		859	2073	71830	74762
440	1373	12979	14792		901	2200	73166	76266
462	1467	12451	14379		944	2336	74451	77731
485	1566	11910	13961		990	2481	75683	79154
509	1671	11363	13544		1038	2636	76862	80537
535	1782	10817	13133		1088	2802	77987	81877
561	1898	10274	12733		1141	2978	79058	83177
589	2019	9740	12348		1197	3166	80075	84438
618	2147	9217	11982		1255	3366	81039	85661
649	2280	8708	11637		1316	3579	81952	86847
681	2419	8215	11315		1380	3804	82814	87999
715	2563	7739	11017		1448	4044	83627	89119
750	2713	7282	10745		1519	4298	84394	90210
786	2868	6845	10499		1593	4566	85114	91273
825	3027	6427	10279		1671	4850	85792	92313
865	3191	6028	10085		1752	5150	86428	93330
907	3359	5650	9916		1838	5466	87025	94329
951	3530	5291	9772		1928	5798	87584	95310
997	3705	4951	9653		2022	6148	88108	96278
1044	3881	4631	9556		2121	6514	88598	97234
1094	4059	4328	9481		2224	6899	89057	98180
1146	4238	4042	9426		2332	7301	89485	99118
1201	4416	3774	9390		2446	7720	89886	100051
1257	4593	3522	9372		2565	8157	90259	100981
1316	4768	3285	9369		2689	8612	90608	101909
1377	4940	3063	9380		2819	9084	90933	102836
1441	5107	2855	9403		2956	9573	91236	103765
1508	5269	2660	9436		3098	10079	91519	104696
1577	5425	2477	9479		3248	10600	91782	105630
1648	5574	2307	9529		3404	11137	92027	106568
1723	5714	2147	9584		3567	11689	92256	107512
1800	5845	1998	9643		3737	12255	92468	108461
1880	5965	1859	9705		3916	12833	92666	109415
1963	6075	1730	9768		4102	13424	92850	110376
2049	6173	1609	9831		4296	14025	93021	111343
2138	6259	1496	9893		4499	14637	93181	112316
2230	6332	1391	9953		4711	15256	93329	113296
2325	6391	1293	10010		4932	15883	93466	114281
2424	6438	1202	10063	<u> </u>	5162	16516	93594	115272

2525	6470	1117	10112	5402	17153	93713	116268
2629	6489	1038	10156	5652	17794	93824	117269
2736	6495	964	10195	5912	18436	93927	118275
2847	6487	896	10229	6183	19079	94022	119284
2960	6466	832	10258	6465	19721	94111	120297
3076	6433	773	10281	6758	20361	94193	121312
3195	6387	718	10300	7062	20998	94270	122330
3317	6330	667	10314	7378	21631	94341	123350
3441	6262	619	10323	7707	22257	94407	124371
3568	6184	575	10327	8048	22877	94468	125393
3698	6097	534	10328	8401	23489	94525	126415
3830	6000	496	10326	8767	24093	94578	127438
3964	5896	460	10320	9146	24687	94627	128460
4099	5785	427	10312	9538	25271	94672	129482
4237	5668	397	10301	9944	25844	94715	130503
4376	5544	368	10289	10364	26405	94754	131522
4516	5417	342	10275	10797	26953	94790	132541
4658	5285	317	10260	11244	27490	94824	133558
4800	5149	294	10244	11705	28013	94856	134574
4942	5012	273	10227	12180	28523	94885	135588
5085	4872	254	10210	12670	29019	94912	136600
5227	4731	235	10194	13173	29501	94937	137611
5369	4589	218	10177	13691	29970	94960	138620
5510	4446	203	10160	14222	30424	94982	139628
5650	4304	188	10143	14768	30864	95002	140634
5788	4163	175	10126	15327	31290	95021	141638
5924	4023	162	10109	15900	31702	95038	142640
6058	3884	150	10092	16487	32101	95054	143641
6189	3747	140	10075	17086	32485	95069	144640
6317	3612	129	10058	17699	32856	95083	145638
6441	3479	120	10040	18324	33214	95095	146633
6561	3349	111	10021	18962	33558	95107	147627
6676	3222	103	10001	19612	33890	95118	148620
6787	3097	96	9980	20272	34209	95129	149610
6893	2976	89	9958	20944	34515	95138	150598
6993	2857	83	9933	21627	34810	95147	151584
7088	2742	77	9907	22319	35093	95155	152567
7176	2630	71	9878	23021	35364	95163	153548
7258	2522	66	9846	23731	35625	95170	154526
7333	2417	61	9811	24450	35874	95176	155500
7402	2315	57	9773	25176	36113	95182	156472
7463	2216	53	9732	25909	36343	95188	157439
7517	2121	49	9687	26647	36562	95193	158403
7563	2029	45	9638	27392	36772	95198	159362
7602	1941	42	9585	28140	36973	95203	160316
7633	1856	39	9528	28893	37165	95207	161265
7657	1773	36	9466	29649	37349	95211	162208
7672	1694	34	9400	30407	37524	95214	163145
7680	1618	31	9330	31166	37692	95218	164076

7681	1545	29	9255
7673	1475	27	9175
7658	1408	25	9091
7636	1343	23	9002
7606	1281	21	8909
7570	1222	20	8812
7526	1165	18	8710
7476	1111	17	8604
7419	1059	16	8494
7356	1009	15	8380
7288	961	14	8263
7214	916	13	8142
7134	873	12	8018
7050	831	11	7892
6961	791	10	7762
6867	753	9	7630
6770	717	9	7496
6668	683	8	7359
6564	650	8	7221
6456	619	7	7082
6346	589	6	6941
6233	560	6	6800
6119	533	6	6657
6002	507	5	6514
5884	482	5	6371
5765	459	4	6228
5644	436	4	6085
5523	415	4	5942
5402	395	4	5800
5280	375	3	5658
5158	357	3	5518

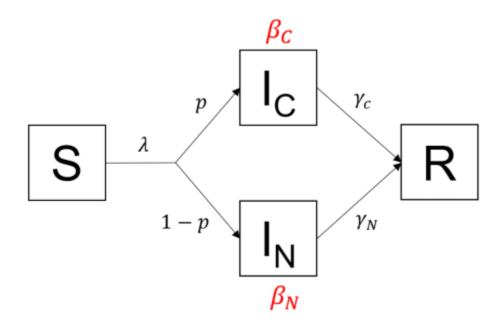
95221	164999
95224	165916
95226	166824
95229	167724
95231	168615
95233	169497
95235	170370
95237	171232
95239	172084
95240	172925
95242	173754
95243	174572
95244	175378
95245	176172
95246	176954
95247	177722
95248	178477
95249	179219
95250	179948
95251	180663
95251	181364
95252	182051
95253	182724
95253	183383
95254	184028
95254	184659
95255	185276
95255	185878
95256	186466
95256	187040
95256	187601
	95224 95226 95229 95231 95233 95235 95237 95239 95240 95242 95243 95244 95245 95246 95247 95248 95249 95250 95251 95251 95252 95253 95253 95254 95255 95256 95256

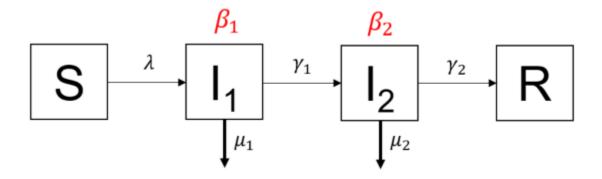
Cálculo de Formas Más Complejas de R0

Para derivar R0 para modelos más complejos, es útil recordar:

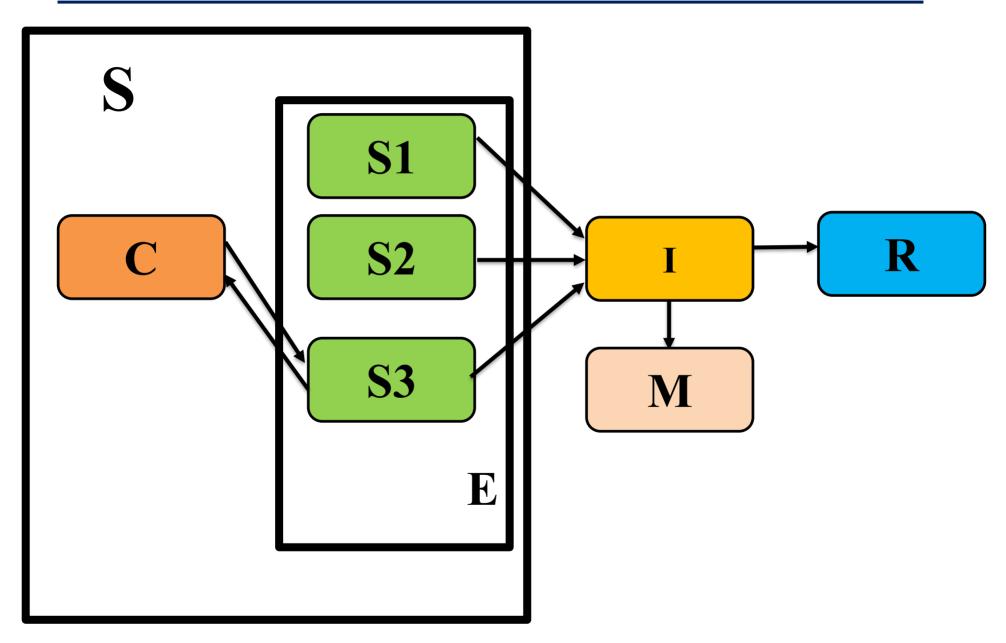
- ➤ la definición de R0: es el número promedio de infecciones secundarias causadas por un solo infectado caso (caso índice) en una población totalmente susceptible
- > el principio de riesgos competitivos, que cubrió en la semana 1

Infección Sintomática y Asintomática


En esta variación del modelo **SEIR-M**, las personas infectadas se estratifican en 4 compartimentos: personas en el CI el compartimento está tosiendo, mientras que las personas en el compartimento IN no muestran síntomas. La proporción de personas infectadas con tos es \boldsymbol{p} , lo que significa la proporción de asintomáticos; las personas infectadas es $\boldsymbol{1-p}$. Las personas con tos transmiten la infección a un ritmo de $\boldsymbol{\beta C}$ y se recuperan a un ritmo de $\boldsymbol{\beta C}$, mientras que las personas asintomáticas transmiten la infección a un ritmo de $\boldsymbol{\beta N}$ y se recuperan a un ritmo de $\boldsymbol{\gamma N}$.


Con los 2 nuevos compartimentos como fuente de infección, podemos abordar el problema calculando primero por separado, el número promedio de infecciones secundarias causadas por un solo caso de tos IC, y el número promedio de infecciones secundarias causadas por un solo caso asintomático IN. Para esto, solo necesitamos aplicar el principio general: Para cualquier infectado el compartimiento, β es (por definición) el número promedio de infecciones secundarias causadas por unidad de tiempo, y $1/\gamma$ es la duración promedio de la infección.

Tome un ejemplo simple: si alguien infeccioso está infectando a 2 personas por día en promedio, y son infeccioso durante 5 días en promedio, esto significa que causan 10 infecciones secundarias en general, durante todo el período infeccioso.


De manera más general, podemos escribir:

Numero *Total* **de** *Infecciones Secundarias* = Infecciones Secundarias por unidad de tiempo × Periodo promedio de infección.

Estructura del Modelo Matemático Modificado SEIR-M-Honduras

CONCLUSIONES

En los análisis de la efectividad de las medidas de respuesta al brote de la enfermedad por coronavirus 2019 (COVID-19), la mayoría de los estudios han utilizado el número de casos confirmados o muertes. Sin embargo, el recuento de casos es la presente estimación conservadora del número real de individuos infectados acumulados con pruebas o en ausencia de pruebas serológicas en toda la comunidad.

El conteo de muertes es una métrica rezagada e insuficiente para la planificación proactiva de la capacidad hospitalaria. Una medida más valiosa para evaluar los efectos de las intervenciones de salud pública en la infraestructura de atención médica son las hospitalizaciones. Desde el inicio de la presente pandemia y su comportamiento al alza, obligo a que se emitieran órdenes presidenciales de "quedarse en casa" para ayudar a mitigar el riesgo de que las hospitalizaciones por COVID-19 abrumaran la infraestructura de atención médica del estado.

Esta estimación evaluó la asociación existentes en los hallazgos de la caracterización de los casos positivos y defunciones, en los que claramente vemos que existen patrones epidemiológicos que sugieren que el promedio de días que los pacientes buscan atención medica va desde **5 hasta 12 días**, dejándonos un marco de relación en que los hospitalizados llegaron alcanzar el **68**% de los casos y de estos un porcentaje de los hospitalizados migraban a situación crítica y hasta las unidades de cuidados intensivos, llegando alcanzar el **24**% de los casos hospitalizados en estas condiciones.

Ajustamos la mejor función de crecimiento exponencial a los datos acumulados de hospitalización en cada municipio para todas las fechas hasta la mediana incluyendo la fecha efectiva de la orden de cuarentena absoluta de cada departamento. Calculamos el 95% de las bandas de predicción en la línea de ajuste exponencial para determinar si el número observado de hospitalizaciones cayó dentro del intervalo. Luego examinamos si las hospitalizaciones acumuladas observadas para las fechas posteriores a la fecha efectiva media se desviaron del crecimiento exponencial proyectado en las hospitalizaciones acumuladas. En un análisis adicional, una función de crecimiento lineal se ajustó a los datos acumulativos de hospitalización para fechas hasta la fecha efectiva media incluida, y la estimación directa del ajuste. Todos los análisis se realizaron con Microsoft Excel.

La desviación comenzó a reflejar el uso de un período de incubación promedio para el inicio de los síntomas y el tiempo de hospitalización para establecer esta fecha. Otros factores que potencialmente aumentan la tasa de propagación del virus y las hospitalizaciones posteriores incluyen el no acatamiento, de las pautas de distanciamiento social y la conciencia general sobre la pandemia. Además, la inseguridad económica y la pérdida del seguro de salud durante la pandemia también podrán aumentar utilización del hospital.